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1. Introduction

This paper contains some applications of Fourier-Mukai techniques to prob-
lems in birational geometry. The main new idea is that flops occur naturally
as moduli spaces of perverse coherent sheaves. As an application we prove

Theorem 1.1. If X is a complex projective threefold with terminal singu-
larities and

X

Y1 Y2

�
��f1

�
�� f2

are crepant resolutions, then there is an equivalence of derived categories
of coherent sheaves D(Y1) −→ D(Y2).

The theorem implies in particular that birational Calabi-Yau three-
folds have equivalent derived categories. This was conjectured to hold by
A.I. Bondal and D.O. Orlov who proved some special cases in [3]. Here we
prove Theorem 1.1 using the by-now standard techniques of Fourier-Mukai
transforms, in particular the ideas developed in [5,6].

For simplicity, let us suppose that Y is a non-singular, projective threefold
and f : Y → X is a proper, birational morphism contracting a single rational
curve C ∼= P1 with normal bundle

NC/Y
∼= OC(−1) ⊕ OC(−1).

Using the theory of t-structures, we define an abelian category Per (Y/X)
⊂ D(Y ) whose objects we call perverse (or perverse coherent) sheaves on Y .
A short exact sequence in Per (Y/X) is just a triangle in D(Y ) whose vertices
are all objects of Per (Y/X). The next step is to construct moduli spaces of
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perverse sheaves. To do this we introduce a stability condition. A perverse
point sheaf is then defined to be a stable perverse sheaf which has the same
numerical invariants as the structure sheaf of a point of Y .

Structure sheaves of points y ∈ Y are objects of the category Per (Y/X),
and are stable for y ∈ Y \ C. For y ∈ C, the sheaf Oy fits into the exact
sequence

0 −→ OC(−1) −→ OC −→ Oy −→ 0. (1)

It turns out that OC is a perverse sheaf, but OC(−1) is not, so that the triangle
in D(Y ) arising from (1) does not define an exact sequence in Per (Y/X).
However the complex obtained by shifting OC(−1) to the left by one place
is a perverse sheaf, so there is an exact sequence of perverse sheaves

0 −→ OC −→ Oy −→ OC(−1)[1] −→ 0 (2)

which should be thought of as destabilizing Oy.
Flipping the extension of perverse sheaves (2) gives stable objects of

Per (Y/X) fitting into an exact sequence of perverse sheaves

0 −→ OC(−1)[1] −→ E −→ OC −→ 0. (3)

These perverse point sheaves E are not sheaves, indeed any such object
has two nonzero homology sheaves H1(E) = OC(−1) and H0(E) = OC.
We shall use geometric invariant theory to construct a fine moduli space W
parameterizing perverse point sheaves on X. Roughly speaking, the space
W is obtained from X by replacing the rational curve C parameterising
extensions (2) by another rational curve C ′ parameterising extensions (3).

The push-down R f∗(E) of a perverse point sheaf E is always the struc-
ture sheaf of a point x ∈ X, so there is a natural map g : W → X. Moreover,
the general point of W corresponds to the structure sheaf of a point y ∈ Y\C,
so g is birational. Thus there is a diagram of birational morphisms

X

W Y

�
��g

�
�� f

The techniques developed in [5,6] allow us to use the intersection theo-
rem to show that W is non-singular, and that the universal family of perverse
sheaves on W × Y induces a Fourier-Mukai transform D(W ) −→ D(Y ).
An easy argument then shows that g : W → X is the flop of f : Y → X.
Theorem 1.1 follows from this because crepant resolutions of a terminal
threefold are related by a finite chain of flops (see J. Kollár [10]).
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The hard work in this paper goes into constructing the moduli space
of perverse point sheaves. It turns out that the correct stability condition
to impose on these objects is that they should be quotients of OY in the
category Per (Y/X). Thus each perverse point sheaf E fits into an exact
sequence of perverse sheaves

0 −→ F −→ OY −→ E −→ 0 (4)

and the space W is really a sort of perverse Hilbert scheme parameterising
perverse quotients of OY . The corresponding subobjects F ⊂ OY are sim-
ple, rank one sheaves, in general with torsion. Thus in the first place we
construct a moduli space of simple sheaves F on Y and then use this space
to parameterise the corresponding perverse point sheaves E.

The theory of perverse sheaves developed below is valid for any small
contraction of canonical threefolds f : Y → X. It seems natural to spec-
ulate that when −KY is f -ample the resulting moduli space of perverse
sheaves W is the flip of f . In that case one would not expect a derived
equivalence between Y and W , but rather an embedding of derived cate-
gories D(W ) ↪→ D(Y ). What prevents us from proving such a result is
our inability to do Fourier-Mukai on singular spaces. There is some hope
that a better understanding of the mathematics surrounding the intersection
theorem might allow flips to be studied in this way. This would be interest-
ing for several reasons, not least because it would give a simpler and more
conceptual proof of the existence of threefold flips. For now, however, this
remains pure speculation!

The plan of the paper is as follows. Section 2 contains the basic defi-
nitions we need from the theory of triangulated categories. In Sect. 3 we
define the category of perverse coherent sheaves and derive some of its
basic properties. We also state Theorem 3.8 which guarantees the existence
of fine moduli spaces of perverse point sheaves. In Sect. 4 we assume this
result and use it to prove Theorem 1.1. The proof of Theorem 3.8 is given
in Sects. 5, 6 and 7.

Acknowledgements I’d like to thank Bondal and Orlov for their wonderful hospitality in
Moscow and for the many useful conversations I had with them. I particularly remember
asking Bondal how Theorem 1.1 might be proved and receiving the cryptic reply ‘Its all
to do with t-structures’ which of course turned out to be correct. The paper also benefitted
from discussions I had with Alastair King and Miles Reid.

Notation. All schemes X are assumed to be of finite type over C and all
points are closed points. D(X) denotes the unbounded derived category of
coherent sheaves throughout. More precisely D(X) is the subcategory of
the derived category of quasi-coherent OX-modules consisting of complexes
with coherent cohomology sheaves. The full subcategory of complexes with
bounded cohomology sheaves is denoted Db(X). The ith cohomology sheaf
of an object E ∈ D(X) is denoted Hi(E) and the ith homology sheaf by
Hi(E). Thus Hi(E) = H−i(E).
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2. Admissible subcategories

This section contains some ideas from the general theory of triangulated
categories. In particular, we define semi-orthogonal decompositions and
t-structures. In fact, the first of these concepts is a special case of the
second, but we give the definitions separately, since one tends to think
of the two structures rather differently. t-structures were introduced in [1]
in order to define perverse sheaves on stratified spaces. Semi-orthogonal
decompositions also appear in [1] but their geometrical significance was
first properly exploited by Bondal and Orlov [2,3]. We fix a triangulated
category A throughout, with its shift functor T : A → A : a �→ a[1].

In the context of birational geometry, the key point to note about de-
rived categories is that performing a contraction corresponds to passing to
a triangulated subcategory. More specifically one should consider so-called
admissible subcategories.

Definition 2.1. A right admissible subcategory of A is a full subcategory
B ⊂ A such that the inclusion functor B ↪→ A has a right adjoint.

Given a full subcategory B ⊂ A one defines the right orthogonal B⊥ ⊂ A
to be the full subcategory

B⊥ = {a ∈ A : HomA(b, a) = 0 for all b ∈ B}.
One can easily show [2] that if a full subcategory B ⊂ A is right admissible
then every object a ∈ A fits into a triangle

b −→ a −→ c −→ b[1],
with b ∈ B and c ∈ B⊥.

Definition 2.2. A triangulated subcategory of A is a full subcategory B ⊂
A which is closed under shifts, that is B[1] = B, such that any triangle
b1 −→ b2 −→ c −→ b1[1] in A with b1, b2 ∈ B has c ∈ B also.

Clearly the right orthogonal of a triangulated category is itself triangulated.
If a triangulated subcategory B ⊂ A is right admissible we say that A has a
semi-orthogonal decomposition into the subcategories (B⊥,B); one should
think of A as being built up from these two smaller triangulated categories.
Important examples of semi-orthogonal decompositions are given by the
following result.

Proposition 2.3. Let f : Y → X be a morphism of projective varieties such
that R f∗(OY ) = OX. Then the functor

L f ∗ : D(X) −→ D(Y )

embeds D(X) as a right admissible triangulated subcategory of D(Y ).
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Proof. The functor L f ∗ has the right adjoint R f∗ and the composite R f∗ ◦
L f ∗ is the identity on D(X) by the projection formula and the assumption
that R f∗(OY ) = OX . It follows that L f ∗ is fully faithful so D(X) can be
identified with its image under L f ∗. Note that if X is non-singular then
L f ∗ embeds Db(X) in Db(Y ), but that this is no longer true when we allow
singularities. ��

The Grauert-Riemenschneider vanishing theorem shows that the hy-
potheses of Proposition 2.3 hold whenever f : Y → X is a morphism of
projective varieties such that Y has rational singularities and −KY is f -
ample.

Corollary 2.4. Let f : Y → X be an extremal contraction of a canonical
threefold. Then D(X) is a right admissible triangulated subcategory of
D(Y ). ��

As we mentioned in the introduction, it is possible that flips also induce
embeddings of derived categories. If this were true, one would be able to
interpret the action of the minimal model program on a variety X as picking
out some minimal admissible subcategory of D(X).

Recall that an abelian category A sits inside its derived category D(A)
as the subcategory of complexes whose cohomology is concentrated in
degree zero. There are by now plenty of examples of interesting algebraic
and geometrical relationships which can be described by an equivalence
of derived categories D(A) −→ D(B). Such equivalences will usually not
arise from an equivalence of the underlying abelian categories A and B,
indeed, this is why one must use derived categories. Changing perspective
slightly one could think of a derived equivalence as being described by
a single triangulated category with two different abelian categories sitting
inside it. The theory of t-structures is the tool which allows one to see these
different categories.

Definition 2.5. A t-structure on A is a right admissible subcategory A≤0

⊂ A which is preserved by left shifts, that is A≤0 [1] ⊂ A≤0.

Given a t-structure A≤0 on A one defines A≤i = A≤0[−i] and A≥i =
(A≤i−1)⊥. One also writes A<i = A≤i−1 and A>i = A≥i+1.

Definition 2.6. The heart (or core) of the t-structure A≤0 ⊂ A is the full
subcategory H = A≤0 ∩ A≥0.

It was proved in [1] that the heart of a t-structure is an abelian category.
Short exact sequences 0 −→ a1 −→ a2 −→ a3 −→ 0 in H are determined
by triangles a1 −→ a2 −→ a3 −→ a1[1] in A with ai ∈ H for all i.

The basic example is the standard t-structure on the derived category
D(A) of an abelian category A, given by

A≤0 = {E ∈ D(A) : Hi(E) = 0 for all i > 0},
A≥0 = {E ∈ D(A) : Hi(E) = 0 for all i < 0}.
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The heart is the original abelian category A. To give another example,
suppose that D(A) −→ D(B) is an equivalence of derived categories. Then
pulling back the standard t-structure on D(B) gives a t-structure on D(A)
whose heart is the abelian category B.

Further examples are provided by admissible triangulated subcategories
B ⊂ A. Any such subcategory defines a t-structure whose heart is trivial. In
fact the converse is true: a t-structure A≤0 ⊂ A satisfying A≤0 ∩ A≥0 = 0
is actually a triangulated subcategory of A. We shall not need this fact and
the proof is left to the reader.

3. Perverse coherent sheaves

In this section we define the category of perverse sheaves with which we
shall be working for the rest of the paper. It is objects of this category which
will be naturally parameterised by the points of a flop. Let f : Y → X be
a birational morphism of projective varieties. We shall make two assump-
tions, firstly that R f∗OY = OX , and secondly that f has relative dimension
one. The example we have in mind is a small contraction of a canonical
threefold.

Let us write A = D(Y ) and B = D(X). By Proposition 2.3, we may
identify B with a right admissible triangulated subcategory of A. Thus there
is a semi-orthogonal decomposition (C,B) where

C = B⊥ = {E ∈ D(Y ) : R f∗(E) = 0}.
Note that objects of C are supported on the exceptional locus of f .

Lemma 3.1. An object E ∈ D(Y ) lies in C precisely when its cohomology
sheaves Hi(E) lie in C.

Proof. There is a spectral sequence Rp f∗ Hq(E) �⇒ H p+q R f∗(E)
which degenerates because f has relative dimension one. ��

Note that the functor R f∗ has the left adjoint L f ∗ and the right adjoint f !.
In this situation one may obtain t-structures on A by glueing t-structures
on B and C. For details see [1, 1.4.8–10] or [8, Ex. IV.4.2 (c)]. Lemma 3.1
allows one to use the standard t-structure on A to induce a t-structure
C≤0 = C ∩ A≤0 on C in the obvious way. Shifting this by an integer p and
glueing it to the standard t-structure on B = D(X) gives a t-structure on A
satisfying

pA≤0 ={
E ∈A : R f∗(E) ∈ B≤0 and HomA(E, C) = 0 for all C ∈ C>p

}
,

pA≥0 ={
E ∈A : R f∗(E) ∈ B≥0 and HomA(C, E) = 0 for all C ∈ C<p

}
.

The heart of this t-structure is the abelian category

p Per (Y/X) = pA≤0 ∩ pA≥0.
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The integer p should be thought of as a choice of perversity. We shall be
mainly interested in the case p = −1, and we refer to objects of the category

Per (Y/X) = −1 Per (Y/X)

as perverse (or perverse coherent) sheaves. The lemma below gives an
explicit description of this category.

Lemma 3.2. An object E of D(Y ) is a perverse sheaf if and only if the
following three conditions are satisfied:

(a) Hi(E) = 0 unless i = 0 or 1,
(b) R1 f∗ H0(E) = 0 and R0 f∗ H1(E) = 0,
(c) HomX(H0(E), C) = 0 for any sheaf C on Y satisfying R f∗(C) = 0.

Proof. Suppose E is a perverse sheaf. The condition that R f∗(E) is a sheaf
on X, together with the spectral sequence of Lemma 3.1, gives condition
(b) and implies that R f∗ Hi(E) = 0 unless i = 0 or 1.

Let τ<i and τ>i be the truncation functors of the standard t-structure on
D(Y ). There are natural maps τ<i E → E and E → τ>i E. Then τ>0 E = 0
because τ>0 E ∈ C>0. Similarly τ<−1 E = 0 because τ<−1 E ∈ C<−1. This
proves condition (a). Condition (c) is clear, since any nonzero map from
H0(E) to a sheaf C ∈ C>−1 induces a nonzero morphism E → C in D(Y ).

The converse is easy and is left to the reader. ��
Definition 3.3. We shall say that two objects A1 and A2 of Db(Y ) are numer-
ically equivalent if for any locally-free sheaf L on Y one has χ(L, A1) =
χ(L, A2).

Recall that for objects L and A of Db(Y ) with L of finite homological
dimension

χ(L, A) =
∑

i

(−1)i dim Homi
D(Y )(L, A).

Thus if Y is a non-singular projective variety, then by the Riemann-Roch
theorem, two objects of Db(Y ) are numerically equivalent precisely when
they have the same Chern character.

Definition 3.4. An object F of D(Y ) is a perverse ideal sheaf if there is
an injection F ↪→ OY in the category Per (Y/X). An object E of D(Y ) is
a perverse structure sheaf if there is a surjection OY � E in the category
Per (Y/X). A perverse point sheaf is a perverse structure sheaf which is
numerically equivalent to the structure sheaf of a point y ∈ Y .

Thus a perverse ideal sheaf F determines and is determined by a perverse
structure sheaf E, which fit together in an exact sequence of perverse sheaves

0 −→ F −→ OY −→ E −→ 0. (5)

Applying the cohomology functor to the above exact sequence shows that
perverse ideal sheaves are actually sheaves, that is satisfy Hi(F) = 0 for
i �= 0.
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Example 3.5. Let us suppose, as in the introduction, that f : Y → X is the
contraction of a non-singular rational curve C with normal bundle OC (−1)⊕
OC(−1) on a non-singular projective threefold Y . For any point y ∈ C there
is an exact sequence of sheaves

0 −→ �C −→ �y −→ OC(−1) −→ 0.

This shows that �y is not a perverse sheaf, and it follows that although Oy
is a perverse sheaf, it is not a quotient of OY in Per (Y/X). Consider instead
non-trivial extensions of the form

0 −→ OC(−1) −→ F −→ �C −→ 0.

One can easily calculate that Ext1
Y (�C,OC(−1)) = C2, so the set of such

sheaves F is parameterised by a rational curve. Composing the map F → �C
with the inclusion �C ⊂ OY gives a nonzero morphism F → OY and we
take E to be its cone. In this way we obtain an exact sequence of perverse
sheaves

0 −→ F −→ OY −→ E −→ 0

with H1(E) = OC(−1) and H0(E) = OC. Thus E is a perverse point sheaf.
The flop of Y along C is a non-singular threefold W with a morphism

g : W → X contracting a single rational curve C ′. We shall show that the
points of W parameterise perverse point sheaves on Y . The perverse point
corresponding to a point w ∈ W \ C ′ is a point y ∈ Y \ C, whereas the
points of C ′ correspond to the perverse point sheaves E described above.

Lemma 3.6. Let E1 and E2 be perverse point sheaves on Y. Then

HomD(Y )(E1, E2) =
{
C if E1 = E2,
0 otherwise.

Proof. If E is a perverse point sheaf then R f∗(E) is the structure sheaf of
a point of X, so HomD(Y )(OY , E) = C. Taking Homs of the exact sequence
(5) into E shows that HomD(Y )(E, E) = C.

Suppose there is a nonzero morphism θ : E1 → E2. Taking Homs
of (5) into E2 shows that the unique map OY → E2 must factor via θ.
In particular, θ is surjective in Per (Y/X). But then the kernel K of θ in
Per (Y/X) is numerically equivalent to zero, and this implies K = 0, so θ
is an isomorphism. ��

Let S be a scheme. Given a point s ∈ S, let js : {s} × Y ↪→ S × Y be
the embedding. A family of sheaves on Y over S is just an object F of
D(S ×Y ) such that for each point s ∈ S the object Fs = L j∗s (F ) of D(Y ) is
a sheaf. Indeed, by [4, Lemma 4.3], this condition implies that F is actually
a sheaf on S × Y , flat over S, so that F defines a family of sheaves in the
usual sense. Once this observation has been made it is clear what the correct
definition of a family of perverse sheaves should be.
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Definition 3.7. A family of perverse sheaves on Y over a scheme S is an
object E of D(S × Y ) such that for each point s ∈ S the object Es = L j∗s (E )
of D(Y ) is a perverse sheaf. Two such families E1 and E2 are equivalent if
E2 = E1 ⊗ L for some line bundle L pulled back from S.

The proof of the following theorem will be given in Sects. 5 and 6 below.

Theorem 3.8. The functor which assigns to a scheme S the set of equiv-
alence classes of families of perverse point sheaves on Y over S is repre-
sentable by a projective scheme M(Y/X).

We conclude this section with the following base-change result.

Proposition 3.9. Let S be a scheme and E a family of perverse sheaves
on Y over S. Put fS = idS × f . Then G = fS ∗(E ) is a family of sheaves
on X over S, and for any point s ∈ S there is an isomorphism of sheaves
Gs = R f∗(Es).

Proof. Fix a point s ∈ S and consider the diagram

Y �
� ��js

��
f

S × Y

��
fS

X
�

� ��is
S × X

where is : {s} × X ↪→ S × X is the embedding.
If p : S × X → S is the projection map, flat base-change shows that

is ∗OX = p∗Os. It follows that L f ∗
S ◦ is ∗OX = js ∗OY . The projection

formula gives isomorphisms

is ∗ ◦ R f∗(Es) = R fS ∗ ◦ js ∗ ◦ L j∗s (E ) = R fS ∗( js ∗OY
L⊗ E )

= is ∗(OX )
L⊗ R fS ∗(E ) = is ∗ ◦ Li∗s (G).

The functor is ∗ is exact and fully faithful on the category of sheaves on X.
Thus R f∗(Es) is a sheaf precisely when Li∗s (G) is. Since E is a family of
perverse sheaves, R f∗(Es) is a sheaf for all s ∈ S, so G is a sheaf, flat over S.
The result follows. ��

4. Flops and the derived equivalence

In this section we shall show how fine moduli spaces of perverse point
sheaves give rise to Fourier-Mukai type equivalences of derived categories.
To do this we shall assume that fine moduli spaces of perverse point sheaves
exist (as in Theorem 3.8) and apply the techniques of [5,6]. In this way we
obtain a proof of Theorem 1.1.
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(4.1) Let X be a projective threefold with Gorenstein, terminal singu-
larities. Recall that a crepant resolution is a morphism f : Y → X from
a non-singular projective variety Y , such that f ∗ωX = ωY . Any such reso-
lution satisfies R f∗(OY ) = OX and contracts only a finite number of curves.
Thus the open subset U ⊂ X over which f is an isomorphism is the com-
plement of a finite set of points.

By Theorem 3.8 there is a fine moduli space M(Y/X) of perverse point
sheaves on Y . Each point y ∈ f −1(U) is a perverse point sheaf so there
is an embedding U ↪→ M(Y/X). Let W ⊂ M(Y/X) be the irreducible
component of M(Y/X) containing the image of this morphism. In fact, it
is possible to prove, as in [5, Sect. 8], that M(Y/X) is irreducible, so that
W = M(Y/X), but we shall not need this.

Let P be a universal object on W ×Y . Thus P is an object of D(W ×Y )
such that the perverse point sheaf on Y corresponding to a point w ∈ W is
the object Pw = Li∗w(P ), where iw : {w} × Y ↪→ W × Y is the embedding.

(4.2) By Proposition 3.9, the sheaf R(idW × f )∗(P ) is a family of struc-
ture sheaves of points on X over W , and therefore, up to a twist by the
pullback of a line bundle from W , is the structure sheaf of the graph
Γ(g) ⊂ W × X of some morphism g : W → X. Thus twisting P by
the pullback of a line bundle from W , we can assume that

R(idW × f )∗(P ) = OΓ(g). (6)

With this condition P is uniquely defined. The morphism g is birational
because for any point x ∈ U there is only one object E of D(Y ) satisfying
R f∗(E) = Ox . Thus there is a diagram of birational morphisms

X

W Y

�
��g

�
�� f

(4.3) The scheme W is a non-singular projective variety and g : W → X
is a crepant resolution. Furthermore, the Fourier-Mukai functor

Φ(−) = RπY,∗(P
L⊗ π∗

W(−)) : D(W ) −→ D(Y ),

is an equivalence of categories which takes Db(W ) into Db(Y ).

Proof. Each object Pw has bounded homology sheaves, and Y is non-
singular, so the object P has finite homological dimension. It follows that
the functor Φ takes Db(W ) into Db(Y ).

For each point w ∈ W the object Pw is simple, so its support is connected,
and since R f∗(Pw) = Ox , where x = g(w), it follows that Pw is supported
on the fibre of f over x. Since f is crepant this implies that Pw ⊗ωY = Pw.
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Given distinct points w1, w2 ∈ W , Serre duality together with Lemma 3.6
shows that

Homi
D(Y )(Pw1,Pw2) = 0

unless g(w1) = g(w2) and 1 ≤ i ≤ 2. The argument of [5, Sect. 6] then
implies that W is non-singular, g is crepant and Φ is an equivalence. ��

(4.4) An immediate consequence of the isomorphism (6) is that there is
a commutative diagram of functors

D(X)

D(W ) D(Y )

�
���Rg∗

�
��� R f∗

�Φ

(4.5) If C is a sheaf on W satisfying Rg∗(C) = 0 then Φ(C)[−1] is
a sheaf on Y .

Proof. First suppose that A is an object of D(W ) with Rg∗(A) = 0 and
such that B = Φ(A)[−1] is a sheaf on Y . By (4.4) one has R f∗(B) = 0 so
by Lemma 3.2 the object B[1] is a perverse sheaf on Y . Thus for any point
w ∈ W ,

Homi
D(W )(A,Ow) = Homi

D(Y )(B[1],Pw) = 0 unless 0 ≤ i ≤ 3.

Moreover, since Pw is a quotient of OY in Per (Y/X),

Hom3
D(Y )(B[1],Pw) = Hom0

D(Y )(Pw, B[1]) = 0.

Thus the object A has homological dimension at most two, and is supported
in codimension at least two. It follows from this that A is a sheaf on W (see,
for example, [6, Lemma 4.2]).

Now assume that C is a sheaf on W satisfying Rg∗(C) = 0 and suppose
that D = Φ(C)[−1] is not a sheaf on Y . As in the proof of Lemma 3.2,
we can find a sheaf B on Y satisfying R f∗(B) = 0, and an integer i < 0,
such that one of Homi

D(Y )(B, D) or Homi
D(Y )(D, B) is nonzero. Since Φ is

an equivalence, B = Φ(A)[−1] for some object A of D(W ), and by the
first part A is a sheaf. This implies that one of the spaces Homi

D(W )(A, C)

or Homi
D(W )(C, A) is nonzero, which is impossible since A and C are both

sheaves. ��

(4.6) The variety W = M(Y/X) is the flop of f : Y → X, that is, if D is
a divisor on W such that −D is g-nef, then its proper transform D′ on Y is
f -nef.
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Proof. Let C be a rational curve on W contracted by g. Put M = Φ(OW (D))
and N = Φ(OC(−1)). Then by Riemann-Roch,

χ(M, N) = χ(OW(D),OC(−1)) = −D · C ≥ 0.

Over the open subset f −1(U) of Y , M is isomorphic to OY (D′), and it follows
that c1(M) = [D′]. By (4.5) the object N[−1] is a sheaf supported on some
curve C ′ of Y which is contracted by f . It follows that χ(M, N) = D′ · C ′
and hence the result. ��

(4.7) Define full triangulated subcategories

C(W/X) ↪→ D(W ) C(Y/X) ↪→ D(Y )

consisting of objects satisfying Rg∗(C) = 0 and R f∗(C) = 0 respectively.
These categories inherit t-structures from the standard t-structures on D(W )
and D(Y ), as in Sect. 3. There is a commutative diagram of functors

C(W/X)

��
Φ̃

�
� �� D(W )

��
Φ

��Rg∗ D(X)

��
id

C(Y/X)
�

� �� D(Y ) ��R f∗
D(X)

in which the rows are exact sequences of triangulated categories. By (4.5),
the equivalence Φ̃[−1] is t-exact, that is preserves the t-structures.

(4.8) There is a chain of exact equivalences of abelian categories

· · · −→ −1 Per (W/X) −→ 0 Per (Y/X) −→ 1 Per (W/X)

−→ 2 Per (Y/X) −→ · · · .

Indeed, it follows from (4.7) that for any integer p the functor Φ induces an
exact equivalence

p Per (W/X) ∼= p+1 Per (Y/X),

and since the flopping operation is an involution we may interchange Y
and W .

5. Perverse ideal sheaves

In this section we use geometric invariant theory to construct fine moduli
spaces of perverse ideal sheaves. As in Sect. 3, let f : Y → X be a birational
morphism of projective varieties of relative dimension one and satisfying
R f∗(OY ) = OX . Our first task is to identify which objects of D(Y ) are
perverse ideal sheaves.
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Proposition 5.1. A perverse ideal sheaf on Y is, in particular, a sheaf on Y.
Furthermore, a sheaf F on Y is a perverse ideal sheaf if and only if the
following two conditions are satisfied:

(a) the sheaf f∗(F) on X is an ideal sheaf,
(b) the natural map of sheaves η : f ∗ f∗(F) → F is surjective.

Proof. Let F be a perverse ideal sheaf on Y and E the corresponding per-
verse structure sheaf. Applying the homology functor to the exact sequence
(5) and using Lemma 3.2 shows that F is a sheaf. The functor R f∗ is exact
on the category of perverse sheaves, so there is an exact sequence of sheaves

0 −→ f∗(F) −→ OX −→ R f∗(E) −→ 0.

It follows that f∗(F) is an ideal sheaf on X.
Let A, B and C denote the kernel, cokernel and image of the map η in

the category of sheaves on Y . Thus we have a pair of short exact sequences
fitting into a diagram

C

0 A f ∗ f∗F F B 0.

��� ���

� � � � �η

The spectral sequence of Lemma 3.1 gives an exact sequence

0 −→ R1 f∗(L1 f ∗ f∗(F)) −→ f∗(F) −→ f∗( f ∗ f∗(F)) −→ 0,

together with the fact that R1 f∗( f ∗ f∗(F)) = 0. Since f∗(F) is torsion-free
this implies that f∗( f ∗ f∗(F)) = f∗(F).

The morphism f is birational, so η is generically an isomorphism and A
and B are torsion sheaves. Applying f∗ to the exact sequences above shows
that f∗(F) injects into f∗(C) and also f∗(C) injects into f∗(F). It follows
that f∗(C) = f∗(F) and so f∗(B) = 0. Since F is perverse, R1 f∗(F) = 0,
so R f∗(B) = 0 and hence by Lemma 3.2, B = 0, that is, η is surjective.

For the converse, suppose F is a sheaf on Y satisfying our two conditions.
There is an exact sequence of sheaves

0 −→ A −→ f ∗ f∗(F)
η−→ F −→ 0. (7)

It follows that R1 f∗(F) = 0 and HomY (F, C) = 0 for any sheaf C on Y
satisfying R f∗(C) = 0, hence, by Lemma 3.2, F is a perverse sheaf on Y .
Since f is birational, η is generically an isomorphism, so A is a torsion
sheaf and

HomY (F,OY ) = HomY ( f ∗ f∗(F),OY ) = HomX( f∗(F),OX )

which is nonzero because f∗(F) is an ideal sheaf. Take a nonzero morphism
F → OY and form a triangle

F −→ OY −→ E −→ F[1].
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It will be enough to show that E ∈ Per (Y/X). Applying the homology
functor gives a long exact sequence of sheaves

0 −→ H1(E) −→ F −→ OY −→ H0(E) −→ 0.

It follows that R1 f∗(H0(E)) = 0 and HomY (H0(E), C) = 0 for any
sheaf C on Y satisfying R f∗(C) = 0. Furthermore f∗(F) is torsion-free
so R0 f∗(H1(E)) = 0. Applying Lemma 3.2 completes the proof. ��
Lemma 5.2. Any perverse ideal sheaf F on Y is simple, that is HomY (F, F)
= C.

Proof. The ideal sheaf f∗(F) is simple, so HomY ( f ∗ f∗(F), F) = C.
Applying the functor HomY (−, F) to the sequence (7) gives the result. ��

6. Moduli of perverse sheaves

In this section we construct a fine moduli space of perverse ideal sheaves. To
do this we mimic C. Simpson’s proof [12, Sect. 1] of the existence of moduli
spaces of semistable sheaves on projective schemes. As before f : Y → X
denotes a birational morphism of projective varieties of relative dimension
one satisfying R f∗(OY ) = OX .

A very special case of Simpson’s construction shows that if one takes
a sufficiently ample line bundle OY (1) on Y and a suitable vector space V ,
then the stable points for the action of the group SL(V ) acting on the Quot
scheme parameterising quotients of V ⊗ OY (−1) with rank one and trivial
determinant are just the points corresponding to ideal sheaves on Y . Here we
shall show that if one takes a sufficiently ample line bundle OX(1) on X and
replaces OY (−1) by f ∗OX(−1) in the above construction, then the stable
points are precisely the points corresponding to perverse ideal sheaves on Y .

Throughout we shall fix a numerical equivalence class (γ). Let F denote
a perverse ideal sheaf on Y in this class.

Rank one, torsion-free sheaves in a given numerical equivalence class
form a bounded family, so we may choose OX(1) so that for any torsion-
free sheaf A on X in the same numerical equivalence class as f∗(F), the
sheaf A⊗OX(1) is generated by its global sections and satisfies Hi(X, A⊗
OX(1)) = 0 for all i > 0.

Put L = f ∗(OX(−1)) and let V be the vector space

V = HomY (L, F) = HomX(OX(−1), f∗(F)).

Let Quot denote the Quot scheme parameterising quotients of the vector
bundle V ⊗ L in the numerical equivalence class (γ).

Fix a very ample line bundle OY (1) on Y . For sufficiently large inte-
gers m, there is a closed embedding of Quot in a Grassmannian, which
sends the quotient V ⊗ L � F to the quotient of vector spaces

HomY (OY (−m), V ⊗ L)� HomY (OY (−m), F).
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This embedding is SL(V )-equivariant. By pulling back the natural SL(V )-
equivariant polarisation of the Grassmannian one obtains an SL(V )-equi-
variant polarisation L(m) of Quot. The following two results of Simpson
describe the stable points of this group action.

Lemma 6.1. [12, Lemma 1.15] There exists M such that for m ≥ M the
following holds. Suppose V ⊗ L � F is a point in Quot. For any subspace
H ⊂ V, let G denote the subsheaf of F generated by H ⊗ L. Suppose that
PG(m) > 0 and

dim(H)

PG(m)
<

dim(V )

PF(m)

for all nonzero proper subspaces H. Then the point is stable with respect to
the polarisation L(m) and the action of SL(V ). ��

Lemma 6.2. [12, Lemma 1.16] There exists M such that for m ≥ M, if
F is the quotient sheaf represented by a point of Quot which is semistable
with respect to Lm and the action of SL(V ), then for any nonzero subspace
H ⊂ V the subsheaf of F generated by H ⊗ L has positive rank. ��

Next we pick out that part of Quot which parameterises quotients which
are perverse ideal sheaves.

Lemma 6.3. There is a locally-closed subscheme U ⊂ Quot parameteris-
ing quotients V ⊗ L � F for which f∗(F) is an ideal sheaf and for which
the natural map αF : V → HomY (L, F) is an isomorphism.

Proof. By Proposition 3.9 there is an open subscheme of Quot parame-
terising quotients for which f∗(F) is torsion-free. There is also a closed
subscheme over which there is a nonzero map f∗(F) → OX . These two
conditions are equivalent to f∗(F) being an ideal sheaf. The condition on
the map αF is clearly open. ��

Let Quot0 be the closure of U in Quot. The action of SL(V ) on Quot
preserves U and hence Quot0 so we obtain an induced equivariant polari-
sation of Quot0 which we also denote by L(m). As noted by Simpson [12,
Proposition 1.12] the stable points for the induced action of SL(V ) with
repect to L(m) are just those stable points of the action of SL(V ) on Quot
with respect to L(m) which lie in Quot0.

Proposition 6.4. For all sufficiently large integers m the following result
holds. The semistable points for the action of SL(V ) on the projective
scheme Quot0 with respect to the polarisation L(m) are precisely the points
of the open subset U. Furthermore all these points are properly stable.
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Proof. Let m be larger than the integer M given by Lemma 6.1 and take
a point p ∈ U corresponding to a quotient V ⊗ L � F. Let H ⊂ V be
a proper nonzero subspace and let G ⊂ F be the subsheaf generated by
H ⊗ L . Since αF is an isomorphism, G is nonzero. But G is a quotient of
H ⊗ L , so f∗(G) is nonzero, and since f∗(F) is torsion-free this implies
that G has rank one. Thus the leading coefficient of the Hilbert polynomial
PG is the same as that of PF .

Since the class of subsheaves of F which are quotients of V ⊗ L is
bounded, the set of possible Hilbert polynomials of G is finite, so we may
assume that the inequality

dim(H)

PG(m)
<

dim(V )

PF(m)

holds. Lemma 6.1 then implies that the point p is stable with repect to
L(m).

For the converse, let m be larger than the integer M given by Lemma 6.2
and take a point p ∈ Quot0 which is semistable with repect to L(m). Let
V ⊗ L � F be the corresponding quotient. By Lemma 6.2, for any nonzero
subspace H ⊂ V , the subsheaf generated by H ⊗ L has positive rank. It
follows that the map αF is an isomorphism.

Let T be the torsion subsheaf of f∗(F) and put Q = f∗(F)/T . Let
H ⊂ V be the subspace HomX(OX(−1), T ). If H is nonzero H ⊗ L gener-
ates a rank one subsheaf of F. Since f is birational this contradicts the fact
that T is torsion. Thus H = 0 and the natural map V → HomX(OX(−1), Q)
is injective.

By assumption f∗(F) is a degeneration of torsion-free sheaves, so by [12,
Lemma 1.17] there exists a torsion-free sheaf A with the same numerical
invariants as f∗(F) and an inclusion Q ⊂ A. By our choice of OX(1) the
vector space HomX(OX(−1), A) has the same dimension as V and the sheaf
A ⊗ OX(1) is generated by its global sections. It follows that Q = A. Then
T is numerically trivial, so T = 0 and f∗(F) is torsion-free. By semi-
continuity there is a nonzero map f∗(F) → OX , so f∗(F) is an ideal sheaf.

��
Theorem 6.5. The functor which assigns to a scheme S the set of equiv-
alence classes of families over S of perverse ideal sheaves in a given
numerical equivalence class (γ) is representable by a projective scheme
MPI (Y/X; γ).

Proof. Let F be a perverse ideal sheaf on Y in the numerical equivalence
class (γ). By assumption f∗(F) ⊗ OX(1) is generated by its global sections
so there exists a surjection V ⊗ OX(−1)� f∗(F). Pulling back and using
Proposition 5.1 shows that there is a surjection V ⊗ L � F and hence
a point of U for which the corresponding quotient is F.

Conversely, the argument of Lemma 3.2 shows that a quotient V ⊗ L
� F corresponding to a point of U is a perverse ideal sheaf. Exactly as
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in [12, Theorem 1.21] we can conclude that there is a coarse moduli space
MPI (Y/X; γ) for perverse ideal sheaves in the numerical equivalence class
(γ), and that a universal sheaf exists locally in the étale topology on M.

All perverse ideal sheaves F have rank one, so χ(F,Oy) = 1 for any
point y ∈ Y . If y is a non-singular point then Oy has a finite locally-free
resolution, so the integers χ(F⊗L), as L ranges over all locally-free sheaves
on Y , have no common factor. Since the sheaves F are simple, an argument
of S. Mukai [11, Theorem A.6] shows that one can patch the local universal
sheaves to obtain a universal sheaf on MPI (Y/X; γ). This completes the
proof. ��

7. Perverse Hilbert schemes

In this section we complete the proof of Theorem 3.8. To do this we construct
a perverse Hilbert scheme P-Hilb(Y/X) parameterising quotients of OY in
the category Per (Y/X). Again f : Y → X denotes a birational morphism of
projective varieties of relative dimension one and satisfying R f∗(OY ) = OX .

If S is a scheme, the S-valued points of the Hilbert scheme of a variety Y
consist of triangles F −→ OS×Y −→ E −→ F [1] in D(S × Y ) such that
E and F are families of sheaves on Y over S. Analagously we make the

Definition 7.1. Let P-Hilb(Y/X) be the functor which assigns to a scheme S
the set of isomorphism classes of triangles F −→ OS×Y −→ E −→ F [1]
in D(S × Y ) such that F and E define families of perverse sheaves on Y
over S.

Given a scheme S we write fS = idS × f : S × Y → S × X.

Lemma 7.2. If F is a family of perverse ideal sheaves on Y over S, the
map

fS ∗ : HomS×Y(F ,OS×Y ) −→ HomS×X( fS ∗(F ),OS×X)

is an isomorphism.

Proof. Since perverse ideal sheaves are sheaves, the object F is a sheaf on
S×Y , flat over S. Consider the natural map of sheaves η : f ∗

S fS ∗(F ) → F .
For each point s ∈ S, the map ηs = L j∗s (η) is just the natural map
f ∗ f∗(Fs) → Fs which is surjective by Proposition 5.1. It follows that
η is surjective.

Let K be the kernel of η. It will be enough to show that there are no
nonzero maps K → OS×Y . For this we may assume that S is affine. Let
p : S × Y → Y be the projection. Since f is birational, p∗(K ) is a torsion
sheaf. But by base-change p∗(OS×Y) = H0(S,OS) ⊗ OY is torsion-free, so
any map p∗(K ) → p∗(OS×Y) is zero. ��
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The functor P-Hilb(Y/X) decomposes into components which parame-
terise ideal sheaves in a given numerical equivalence class (γ):

P-Hilb(Y/X) =
∐
(γ)

P-Hilb(Y/X; γ).

Theorem 7.3. For each numerical equivalence class (γ) the corresponding
functor P-Hilb(Y/X; γ) is representable by a projective scheme.

Proof. By Theorem 6.5 there is a fine moduli space M PI (Y/X) for perverse
ideal sheaves on Y . An S-valued point of MPI (Y/X) is a family of perverse
ideal sheaves on Y over S. By Proposition 3.9, applying the functor R f∗
gives a family of ideal sheaves on X over S. This gives a morphism

MPI (Y/X) −→ M I (X),

where the scheme on the right is the moduli space of ideal sheaves on X.
On the other hand, an S-valued point of the Hilbert scheme Hilb(X)

determines a family of ideal sheaves on X over S, so there is a morphism

Hilb(X) −→ M I (X),

which induces a bijection on closed points. I claim that P-Hilb(Y ) is repre-
sented by the fibre product

Hilb(X) M I (X).

P-Hilb(Y/X) MPI (Y/X)

�

�
�

�

�

Indeed, an S-valued point of the functor P-Hilb(Y/X) is a triangle of
objects

F −→ OS×Y −→ E −→ F [1]
of D(S × Y ), each of which is a family of perverse sheaves on Y over S.
Applying the functor R fS ∗ gives a short exact sequence of sheaves on S×X,
each of which is a family of sheaves on X by Proposition 3.9. This defines
an S-valued point of Hilb(X). The family F defines an S-valued point of
MPI (Y/X) so we get an S-valued point of the fibre product.

Conversely, an S-valued point of the fibre product gives a family of
perverse ideal sheaves F on Y over S together with a short exact sequence

0 −→ fS ∗(F ) −→ OS×X −→ G −→ 0

of S-flat sheaves on S×X. By Lemma 7.2 this uniquely determines a triangle

F
α−→ OS×Y −→ E −→ F [1]
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in D(S × Y ) with G = R fS ∗(E ). This is an S-valued point of the functor
P-Hilb(Y/X) providing E defines a family of perverse sheaves on Y over S.

Applying the functor L j∗s and noting that, as in Proposition 5.1, any
nonzero morphism Fs → OY is an injection in Per (Y/X), it is enough to
show that L j∗s (α) is nonzero for all s ∈ S. But if L j∗s (α) vanishes then

H−1(L j∗s (E )) = H0(Fs),

so R f∗(L j∗s (E )) cannot be a sheaf. But G is flat over S, so this contradicts
the argument of Proposition 3.9. ��

Proof of Theorem 3.8. Let (γ) denote the numerical equivalence class of
the ideal sheaf �y of a point y ∈ Y . I claim that the scheme P-Hilb(Y/X; γ)
is a fine moduli space for perverse point sheaves on Y .

An S-valued point of P-Hilb(Y/X; γ) certainly determines a family of
perverse point sheaves on Y over S. For the converse suppose E is a family
of perverse point sheaves on Y over S. The object G = R fS ∗(E ) is a family
of points on X over S and hence, up to a twist by a line bundle from S, is
the structure sheaf of the graph of a morphism S → X. Twisting E by the
pullback of a line bundle from S we may assume that there is a surjection
δ : OS×X � G whose kernel is flat over S.

By adjunction, there is a morphism β : OS×Y →E such that R fS ∗(β) = δ.
Forming a triangle

F −→ OS×Y
β−→ E −→ F [1]

gives an S-valued point of P-Hilb(Y/X; γ) providing F is a family of
perverse sheaves. Applying the functor L j∗s it will be enough to check that
L j∗s (β) is nonzero for all s ∈ S. But if L j∗s (β) = 0 then

H1(L j∗s (F )) = H0(Es),

so R f∗(L j∗s (F )) cannot be a sheaf, and this contradicts the argument of
Proposition 3.9, since R fS ∗(F ) is flat over S. This completes the proof. ��
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